
© Copyright 2020 Netcompany. All rights reserved.

Date:
Version:
Author:
Contact:

GIT – FÅ STYR PÅ 
UDVIKLINGEN!

NETCOMPANY

2020-05-06
1.5
Rasmus Bækgaard
rab@netcompany.com



.

2

• What is Git
• Practical theory
• Commands frequently used, and commit messages

• Branches
• Merging and merge conflicts (live demo)
• Rebasing
• Pull Requests (live demo)

• Strategies - How most projects are (/should be) using Git

• Goodies

• Questions

Agenda and focus



.

3

“

3

• USB-sticks

• .zip and .tar.gz

• Dropbox

• SVN/TFVS

History



.

4

Misconception: Git is not a hosting service, and not a build agent

• Git is a tool to track your code.

• A hosting service is a place you keep your code (and more).
• Azure DevOps / TFS 
• Bitbucket
• GitHub 
• GitLab

• Most of these slides are only about the tool Git.



.

5

Who uses what?

Source: Stack Overflow’s Developer Survey Results 2018



.

6

The big change with a Git repository

• You can work offline.

• The mandatory synchronization is gone.

• You can make as many “commits” as you like without interrupting your colleagues’ work.



.

7

Basic commands and functionality

• Git introduces new commands to use:
• Add
• Commit
• Fetch and Pull
• Push

• Branch
• Checkout (switch branch)
• Merge / Rebase

• Stash

• I have a cheat sheet you can get
after the talk, don’t worry.



.

8

Branches and merges – the overview



.

9

Branches and merges – the overview



.

10

Branches and merges – Commit message



.

11

Commit messages

• Why write the message?
• Speed up the reviewing process.
• The reviewer might not understand why 

you made a change.

• How to write the message?
• Ask yourself “Why did you make the commit?”
• Imagine finishing the line “This commit will…“

• ‘Add’ / ‘Fix’ / ‘Remove’ / …
• The smaller the impact, the better.



.

12

PAUSE

Du er velkommen til at stille spørgsmål i chatten



.

13

Branches



.

14

Branches

• Encapsulate what you are working on.

• Should have only one purpose.
• Make them short-lived.

• Work on multiple features if you need to.

• Don’t worry about other developers’ code.

• Naming: 
• Feature/<Case ID>_<Title>
• Hotfix/<Title>
• Release/<Release ID>



.

15

Merging

• Get one branch’s content into another

• Three variants of merging:
• Fast-forward
• No fast-forward
• Squash merge



.

16

Branches and merge conflicts

• Live demo



.

17

PAUSE

Du er velkommen til at stille spørgsmål i chatten



.

18

Rebase

• Alternative to merging into your feature.

• Takes a copy of the commits and 
moves them up.

• Takes a bit getting used to.



.

1919

Rebase – Best idea ever

• Make non-linear history linear

• Gives a nicer history.

• Can also modify the commits: 
• Fewer commits
• Another message



.

2020

Rebase – Best idea ever

1. Red branch is based on 
an old master

2. Red branch is rebased 
on the latest master

3. Red branch is merged 
into master



.

2121

Rebase – Best idea ever

GOLDER RULE OF REBASING:

NEVER EVER rebase a branch that has been 
pushed.



.

2222

Rebase – Best idea ever

GOLDER RULE OF REBASING:

NEVER EVER rebase a branch that has been 
pushed.

• Rebasing makes new commits, with new 
content -> thereby new parents.

• Duplicate of the parents in both branches.



.

23

Pull Requests

• Merging a Feature into Development/Releases/Master

• This is your code review.

• This is your ”can it still build”-check.

• This is your ”do all the unit tests flag green?”-check.

• Live demo



.

24

PAUSE

Du er velkommen til at stille spørgsmål i chatten



.

25

Workflow – What strategy to use?

• Release & Trunk (Master & Development)
• Latest release, and what is under development.



.

26

Workflow – What strategy to use?

• Release & Trunk (Master & Development)
• Latest release, and what is under development.

• Multi-Release & Trunk (Master, Release 1.6, Release 1.7, Release 1.8, Development)
• Multiple branches with releases, and a branch for development.



.

27

Workflow – What strategy to use?

• Release & Trunk (Master & Development)
• Latest release, and what is under development.

• Multi-Release & Trunk (Master, Release 1.6, Release 1.7, Release 1.8, Development)
• Multiple branches with releases, and a branch for development.

• Git Flow (Master, Release 1.6, Release 1.7, Release 1.8, Development, Feature/X, Feature/Y…)
• A branch for each release.
• A branch for each issue / case / feature.
• Merge with Pull Request



.

28

Workflow – What strategy to use?

• Release & Trunk (Master & Development)
• Latest release, and what is under development.

• Multi-Release & Trunk (Master, Release 1.6, Release 1.7, Release 1.8, Development)
• Multiple branches with releases, and a branch for development.

• Git Flow (Master, Release 1.6, Release 1.7, Release 1.8, Development, Feature/X, Feature/Y…)
• A branch for each release.
• A branch for each issue / case / feature.
• Merge with Pull Request

• Git Flow with Blessed Repository
• Each team is developing their own version, and these will later be merged.



.

29

Workflow – What strategy to use?

• Release & Trunk (Master & Development)
• Latest release, and what is under development.

• Multi-Release & Trunk (Master, Release 1.6, Release 1.7, Release 1.8, Development)
• Multiple branches with releases, and a branch for development.

• Git Flow (Master, Release 1.6, Release 1.7, Release 1.8, Development, Feature/X, Feature/Y…)
• A branch for each release.
• A branch for each issue / case / feature.
• Merge with Pull Request

• Git Flow with Blessed Repository
• Each team is developing their own version, and these will later be merged.



.

30

Branches – in Git Flow



.

31

Workflow – Git Flow



.

32

Git good – good practices

• When starting a new issue/ticket/bug/feature, create a new branch
• You can switch to another if need be, and back again.

• Commit often
• When added a new test / refactored code in file / before doing something “risky”.
• And make a meaningful commit message every time.

• Push before you go home.
• Avoid lost work, and your branch is you own anyway.

• Merge only from a feature branch to the development branch using Pull Requests
• You review your own code and add additional information if something should happen in the release 

notes. 
• Someone else will read the code and add comments to it before accepting the changes.

• Delete the feature-branch when it has been merged into Master
• Both locally and on the remote.



.

33

Tools

GUI Clients

• Git Extensions

• SourceTree

Code Editors

• Visual Studio

• IntelliJ

External Merge Tools

• P4Merge

• …

Command Line

• PowerShell with Git-Posh



.

3434

Goodies

Setup Git, and a cheat sheet:
https://github.com/bakgaard/GitSetup



.

35

QUESTIONS?



www.netcompany.com

WE ARE
COMMITTED

.

© Copyright 2020 Netcompany. All rights reserved.


